
Primality Certification with Elliptic Curves

Ben Black

December 11, 2019

1 Primality Testing and Certification

In modern day cryptography, the Miller-Rabin probabilistic primality test is
universally used for checking primality of general integers. It is much faster
both practically and algorithmically than any deterministic primality test, for
any reasonable bound on certainty. In fact, if we set our reasonable bound of
certainty to that of a hardware failure giving us an incorrect answer, then it is
still much, much faster. Because the chance of hardware failure increases with
increased computation time and memory usage, it can be argued that Miller-
Rabin can actually give a more certain result than some deterministic tests.

So how can general purpose deterministic primality tests prove their worth
in this imperfect world? The way I will discuss in this paper is the ability to
generate short, easily checkable proofs of primality, which can be verified much
faster using much simpler code than the generator of the proof. Even if this
process of finding the proof is fairly slow, then being able to check them may
still have potential uses.

• If you are using an internet service which generates primes, and you don’t
like the certainty guarantees of checksums to validate that there were no
errors in the transfer, then you could send both the prime, and the proof
of the prime, and verify the proof on on site.

• If you wanted to store large databases of provable primes and didn’t trust
that the storage hardware would keep them correctly, you could also store
the proof of the prime, and just check it whenever you need to use the
prime.

The best algorithm for finding such a proof of primality is ECPP, the elliptic
curve primality test discovered by Atkin and Morain. Although far slower than
Miller-Rabin, it is fast enough to operate on cryptographically important primes
in a few seconds. Unfortunately, ECPP is quite complicated and well beyond
the scope of this paper. However, the condition one needs to check the primality
certificate it generates is quite simple, just based on clever analysis of orders
in elliptic curves. I will introduce the theory of an elementary version of the
certificate the Pocklington criterion, then the elliptic curve primality criterion,

1

show a simple algorithm to generate these checks for arbitrary primes, and then
argue that these may be useful in real world applications.

2 Pocklington primality test

The elliptic curve primality condition is modeled after the Pocklington primality
test. I will explain it here in order to give some extra intuition.

2.1 Inspiration

Fermat’s little theorem states that for p prime, and a coprime to p,

a(p−1) = 1 (mod p)

We wish to find a converse to this statement that gives some set of conditions
that force primality. To start, we know that (p − 1) is the smallest power of a
that equals 1. Also, for m composite, we know that al = 1 (mod p) for some
l < p − 1. Specifically, we can use the fact that (Z/pZ)∗ is cyclic to give the
following statement.

Theorem 1 If there exists an a coprime to n such that an−1 = 1 (mod n) but
a(n−1)/q 6= 1 (mod n) for every prime q|n− 1, then n is prime.

We now have a condition for primality. However, there is the problem that we
need to factor n−1, which is not generally computationally tractable. However,
if we already knew factors, then we could easily and quickly verify the primality
of n by the above condition. So the certificate of primality of n would simply
be the factorization of n− 1.

2.2 Pocklington Criterion

Pocklington’s insight was that if there was a large prime factor q of n− 1, then
there are some conditions that allow us to show primality only based on the
primality of q, and even if we don’t know the other factors of n− 1. Formally,

Theorem 2 Let n > 1 be an integer, q a prime divisor of n− 1, and a coprime
to n. If

q >
√
n− 1

and
gcd(a(n−1)/q − 1, n) = 1

Then n is prime

2

2.3 Proof of Pocklington Criterion

Suppose n is composite. Then there must be a p ≤
√
n that divides n.

We are going to look at the order of Fp which is, p − 1, to reach a contra-
diction.

We have
an−1 = 1 (mod p)

Since q is prime, and q >
√
n − 1 ≥ p − 1, q is coprime to p − 1. Therefore, q

is multiplicatively invertible in (Z/(p − 1)Z)∗, and so we can just multiply the
exponent of a by the inverse of q

(a(n−1))1/q = a(n−1)/q = 1 (mod p)

Which contradicts the condition gcd(a(n−1)/q − 1, n) = 1. So n is prime.

2.4 Proof Certificate using Pocklington’s Criterion

Note that factoring n − 1 is trivial if it factors into 2p, where p is prime. Also
note that we get the size condition of Pockington’s criterion, p >

√
n − 1, for

free because is p such a large factor of n− 1.
Understanding that not all n are of this sort, we can still use Pockington’s

criterion to say that if gcd(a(n−1)/q − 1, n) = gcd(a2 − 1, n) = 1, and that p is
prime then n is prime. Of course you need to check if p is prime, but hopefully
you can use the same method to check that. And so on until you create a
decreasing chain of primes

n > p0 > p1 > ... > psmall

that demonstrate the previous number’s primality.

Example 1 Creating a full proof of primality for n = 47,
n q = (n− 1)/2 gcd(a2 − 1, n)
47 23 1

23 11 1
11 5 1
5 2 1

2 is clearly prime, so each n is in turn prime, and so 47 is prime.

Even though this method does not work for general primes, we will make a
similar method work using elliptic curves. The key will be that although there is
only one (Z/nZ)∗, there are many elliptic curves over Z/nZ, and some of them
will have order 2p, where p is prime.

3 Elliptic Curves Overview

3.1 Introductory Sources

There are many fabulous introductions to the basics of elliptic curves, including

3

• The fabulous explanation by Andrea Corbellini. It includes interactive
components and a thorough overview that does not require much back-
ground in algebra. Posted here:

http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/

#elliptic-curves

• Joseph H. Silverman John T. Tate Rational Points on Elliptic Curves

As these are better written than I could ever manage, I not attempt to
introduce elliptic curves in a comprehensive manner, especially since most of the
theory is unnecessary for our purpose. Instead, I will just cover the important
topics such as order of elliptic curves.

3.2 Refresher

Recall that elliptic curves are defined in a plane of F2, where F is some field, as
formulas

y2 = x3 + ax + b where a, b ∈ F

There is a group operation +, with identity O which is an additional point
on the elliptic curve that is not on the plane. It is often referred to as the point
at infinity. You can add points (x1, y1) and (x2, y2) on elliptic curves by the
formulas

m =

{
y2−y1

x2−x1
, if x1 6= x2

3x2
1+a
2y1

, if x1 = x2

}

xr = (m2 − x1 − x2)

yr = −(y1 + m(xr − x1))

And (xr, yr) is the result.
Finally, multiplication of a point by an integer m is repeated addition of the

point by itself m times.

3.3 Calculating Elliptic Curve Arithmetic

Calculating these formulas is difficult and error prone to work out by hand,
and is not pleasant even using an ordinary calculator. I wrote a python file
to support this paper, and in it is an add function and a mul function to help
calculate addition and multiplication of elliptic curves.

It can be found here: https://github.com/weepingwillowben/num_proj/
blob/master/prime_check.py. It uses the gmpy2 math library for modular
arithmetic, and so unfortunately, it is non–trivial to install. Installation in-
structions are at the top of the file. All elliptic curve examples shown were
made using this code to calculate operations.

4

3.4 Note about E(Z/nZ)
Now that we are getting into the main subject of the paper, I have to mention a
problem with elliptic curves in these sorts of proofs. That is, elliptic curves are
only well defined over fields, and Z/nZ is not a field unless n is prime. However,
it turns out to not be too much of a problem, as operations work as you might
expect them to, if they are well defined.

In particular, let L,M ∈ E(Z/nZ). Define Lp = (xp, yp) ∈ E(Fp), and
Op = O ∈ E(Fp). Then if L + M is defined, then (L + M)p = Lp + Mp.

So how do we check if the group operation is well defined? Recall the formula
for the slope of the line

m =

{
y2−y1

x2−x1
, if x1 6= x2

3x2
1+a
2y1

, if x1 = x2

}
This operation fails in Z/nZ if the denominator of the respective formula is

not invertible (mod n). This occurs exactly when{
gcd(x2 − x1, n), if x1 6= x2

gcd(2y1, n), if x1 = x2

}
6= 1

It turns out that Z/nZ is near enough to a field that this is the only way in
which the elliptic curve assumptions fail, so this is an if and only if.

In the context of factoring and primality proving, the failure of addition
reveals that n is not prime, and in fact, gives a factor of n, and so we don’t
have to continue to try to work in Z/nZ anymore. So the failure condition for
addition in E(Z/nZ) actually helps our work, instead of limiting us.

4 Elliptic Primality Testing

4.1 Approach

For the Pocklington criterion, we examined the order of the cyclic group (Z/pZ)∗

in order to prove primality. In (Z/nZ)∗, the order is (n− 1). So we look at the
order of elliptic curves in order to find a similar result.

4.2 Orders of Elliptic Curves

4.2.1 Theory

The order of a point on an elliptic curve, denoted #L, is the number of times
you can add a point L ∈ EA,B(Fp) to itself before getting back the identity O.
Formally, #L is the smallest m such that mL = O. Note that this implies that
if you multiply L by m+ 1, you get back L, and (m+ 2)L = 2L, and so on, and
so you can think of the multiplicand operating in Z/mZ. This is a special case
of the fundamental theorem of finite abelian groups. Alternatively, mL = O can
be though of as Fermat’s little theorem for elliptic curves. Order analysis on
points forms the basis for the primality test, mirroring Pocklington’s criterion.

5

Order on the curve itself is defined very differently. For EA,B(Fp), the order
of an elliptic curve, denoted #EA,B(Fp) is the number of points in the elliptic
curve. For any L 6= O ∈ EA,B(Fp), #L divides #EA,B(Fp).

4.2.2 Algorithm

It turns out that you can compute #EA,B(Fp) by counting the number of points
on the elliptic curve in F2

p, plus the point at infinity. For a small p, one can
count the points by just looking at the formula

y = ±
√
x3 + ax + b

And checking counting how many times y is an integer for all values x ∈ Fp.

Example 2 Counting points in E1,1(F5),

We have x = 0, 1, 2, 3, 4, and so x3 + x + 1 = 1, 3, 1, 1, 4, respectively.
The numbers which are quadratic residues, i.e. have a non-zero square
roots in F5 are 1 and 4. So we have 4 values of ±y, each of which non-
zero, and so are distinct. So we have 8 points in total, 9 including O.
So #E1,1(F5) = 9.

Lets check the above theorem that the order is exactly the number of points
on the curve.

Example 3 Checking that point order divides number of points in E1,1(F5),

Take (0, 1) ∈ E1,1(F5). Then perhaps using the point addition calcu-
lator here: https://cdn.rawgit.com/andreacorbellini/ecc/920b29a/
interactive/modk-add.html, we can compute that
(0, 1) + (0, 1) = (4, 2)
(4, 2) + (0, 1) = (2, 1)
(2, 1) + (0, 1) = (3, 4)
(3, 4) + (0, 1) = (3, 1)
(3, 1) + (0, 1) = (2, 4)
(2, 4) + (0, 1) = (4, 3)
(4, 3) + (0, 1) = (0, 4)
(0, 4) + (0, 1) = O
Which is equal to 9 × (0, 1), so we confirmed that #(0, 1) = 9 | 9, as
desired.

This counting algorithm is impractical if p is large. Luckily, we have polyno-
mial time algorithms for this, Schoof’s algorithm, and it’s variants and improve-
ments. So this is a tractable problem. However, Schoof’s algorithm is extremely
complicated, as well as rather slow, so I will not cover it here.

6

4.3 Bounds on Orders of Elliptic Curves

Although counting precisely how many points are on a particular curve is a
challenge, Hasse discovered useful bounds for it.

In particular, for N the number of points on an elliptic curve over Fq,

|N − (q + 1)| ≤ 2
√
q

We will use this in order to derive a contradiction that will prove the pri-
mality of N .

4.4 Elliptic Primality Criterion

We are going to use this order exactly like we used n− 1 in the (Z/pZ)∗ based
primality proof, and establish a nearly identical criterion.

Theorem 3 Let n be an integer not divisible by 2 or 3. Let A,B ∈ Z/nZ such
that gcd(4A3 + 27B2, n) = 1, and let L 6= O ∈ EA,B(Z/nZ). If there exists a
prime q > (4

√
n + 1)2 such that qL = O, then n is prime.

Example 4 Checking primality of 103

Lets take L = (85, 81) ∈ EA=72,B=93(Z/103Z). Then we can calculate
that 53× L = O, and so by the theorem, 103 is prime if 53 is prime.

4.5 Proof

Proof by contradiction, assume some prime p|n. Mirroring the Pocklington
criterion proof, we are going to look at the order of Lp ∈ EA,B(Fp), which is
the point L defined over Fp instead of Z/nZ.

1. gcd(4A3 + 27B2, n) = 1 ensures that the elliptic curve is well defined over
EA,B(Fp), even though we don’t know p, because if p|4A3 + 27B2, then
p| gcd(4A3 + 27B2, n).

2. The n does not divide 2 or 3 is going to be necessary for a later theorem
that we need to show that we can actually find such an elliptic curve in
polynomial time. But it isn’t necessary for the criterion.

Now the meat of the proof, using the notation from the E(Z/nZ) section of the
paper.
qLp = (qL)p, by the elliptic curve behavior over Z/nZ.
qL = O by the criterion, and so qLp = Op = O, again by behavior over Z/nZ.
But since Lp 6= O and q is prime, the order of Lp must be q. After all, if it were
a number t smaller than q then we could talk about qL in terms of q (mod t),
due to the fundamental theorem of albelian groups, where 0 (mod t) maps to

7

O. But q is coprime to t, so q couldn’t be 0, and so qL couldn’t be O unless
t = 1 =⇒ Lp = O. But that is not true, by assumption. So indeed, the order
of Lp must be q.
But by Hasse’s bound on the order of elliptic curves,

#Lp ≤ #EA,B(Fp) Definition of order on Lp

≤ (
√
p + 1)2 Hasse’s bound

≤ (4
√
n + 1)2 Condition on p

< q Condition on q

Which is a contradiction, so n must be prime.

4.6 Chains of Conditions

Like I showed earlier with the Pocklington Criterion, these conditional proof
of primality based on a smaller number’s primality can be chained together to
create a complete certificate of primality.

Example 5 Checking that point counting and order are equivalent in E1,1(F5),

We can extend the example from before to also include the conditions
that show that 53 is prime.

n L A B q qL

103 (85,81) 72 93 53 O
53 (4,30) 37 52 29 O

Now, we can easily check that 103 is prime if 29 is prime using the criterion.

4.7 Implementation

Included in the my python code is a check prime function that takes in a curve,
point, assumed prime, and number to check and outputs whether it is prime
using the method described above. If you are good with code, you should be
able to play around with it and see that it works exactly as described above.
There is also a check certificate that checks a list of such information.

5 Generating the Primality Proof

The ability to check this condition would not be useful in a practical setting
unless we had the ability to generate the proof conditions for general numbers
in polynomial time. There are two main ways of finding the curves and points
which meet the criterion. The first one, the Goldwasser–Kilian algorithm, is
much simpler, and so that is what I will describe in depth. The second one is
much faster and is what is used in practice, but also much more complicated.

8

5.1 Goldwasser-–Kilian Algorithm Overview

This algorithm is based on guess and check. Naively, We want to just guess a
curve, a point L, and large prime q such that qL = O. In this algorithm, we will
still end up guessing the curve and the point, but instead of finding the prime
by guessing, we can use the relationship between point counting and order and
do fast point counting using Schoof’s algorithm in order to find our candidate
q.

Choose L, a random point on Z/nZ, and choose a random elliptic curve E
over Z/nZ, such that L is in E. Count the number of points m. Check if m
satisfies 2q, with q a probable prime (checking with Miller-Rabin). Also check
that qL = O. If both hold, then you have found the point, curve, and prime
number that satisfy the condition.

5.2 Implementation

To make this more concrete, I made a really inefficient version of this algorithm
based on the description in An Overview of Elliptic Curve Primality Proving by
Frank Li [1].

The gen and check certificate function prints out the certificate and then
checks it. It uses an exponential time point counting function instead of Schoof’s
algorithm, and an exponential time modular square root algorithm, so it unfor-
tunately doesn’t work on large primes, but hopefully it can be of use and maybe
some fun.

5.3 Distribution of Orders of Random Elliptic Curves

At this point you might wonder how we know that we can find elliptic curves
of the desired form. Perhaps we have the same problem as we had with Pock-
ington’s criterion, and we just described a special purpose primality proving
algorithm. Or perhaps it takes too long to randomly find them.

It turns out that this really does work, though. The proof that there will
always be an elliptic curve that we can find in expected polynomially many
guesses is the following theorem due to Lenstra:

Theorem 4 Let p 6= 2, 3 prime, and let S ⊆ {p+1−b√pc, .., p+1+b√pc}. Let
A,B be chosen from a uniform random distribution over Fp. Then there exists
fixed constants k such that

Prob(#EA,B(Fp) ∈ S) >
k

log(p)

|S| − 2

2b√pc+ 1

6 Real World Considerations

For all practical purposes, the Primo software by Marcel Martin is the best
available elliptic curve primality prover implementation for general numbers.

9

Although the algorithm it uses to generate primality certificates is quite com-
plicated, the certificate itself, and the method of checking it are both quite
simple. It only requires a little more mathematical theory than in this paper,
and only a couple hundred lines of code using a good math library like gmpy2.
In fact, several people have actually created independent checks for Primo’s cer-
tification files, although I have yet to find any that actually work on the most
recent version of Primo. By pairing this independent checking with Primo’s
builtin verification, one should be able to rule out implementation errors or
hardware failures with a very high confidence level, easily on par with that of a
thorough Miller–Rabin test.

These checks should also be extremely fast. Assuming that the Primo checker
is not taking incorrect shortcuts when verifying the certificate, we should be
able to evaluate it’s performance checking the certificates as the actual speed
of checking primality. On my machine, using all cores, generating the proof of
primality for the prime (101999 + 7321) took 678s. But checking the certificate
only took 0.13 seconds. For comparison, gmpy2’s is prime function, which
uses Miller–Rabin, took 0.62 seconds for 6 runs of Miller–Rabin (the lowest end
of reasonable confidence) and 1.69 seconds for 25 runs (the default). As gmp
is well regarded as a high quality, fast library, and gmp’s mpz probab prime p

(which gmpy2’s is prime uses) is actually used in some real world cryptographic
applications, I think it fair to say that checking these elliptic curve primality
certificates can be at least as fast, if not faster than a decent Miller-Rabin test.

So hopefully I have shown how deterministic primality testing may have
some use in practical applications as well as explaining the basic theory enough
to explore the topic with some more comfort.

References

[1] Li, Frank. ”Elliptic Curves for Primality Proving.” SpringerReference (n.d.):
n. pag. Stanford University, 15 Dec. 2011. Web. http://theory.stanford.
edu/~dfreeman/cs259c-f11/finalpapers/primalityproving.pdf.

[2] Goldwasser, Shafi, and Joe Kilian. ”Primality Testing Using Elliptic
Curves.” Journal of the ACM 46.4 (1999): 450-72. Web. https://pdfs.
semanticscholar.org/997d/f4e2a661aed97b2ad782531aa2ce122cab4d.

pdf.

[3] Atkin, A., and F. Morain. ”ELLIPTIC CURVES AND PRI-
MALITY PROVING.” Mathematics of Computation (1993): 29-
68. Web. http://www.ams.org/journals/mcom/1993-61-203/

S0025-5718-1993-1199989-X/S0025-5718-1993-1199989-X.pdf.

10

